An Economic Dispatch Method of Microgrid Based on Fully Distributed ADMM Considering Demand Response

Author:

Zhou Dan,Niu Xiaodie,Xie Yuzhe,Li Peng,Fang Jiandi,Guo Fanghong

Abstract

Aiming at the problem that the existing alternating direction method of multipliers (ADMM) cannot realize totally distributed computation, a totally distributed improved ADMM algorithm that combines logarithmic barrier function and virtual agent is proposed. We also investigate economic dispatch for microgrids considering demand response based on day-ahead real-time pricing (RTP), which forms a source-load-storage collaborative optimization scheme. First, three general distributed energy sources (DERs), renewable energy resources (RESs), conventional DERs and energy storage systems (ESSs), are considered in the method. Second, the goal of economic dispatch is to minimize the sum of three energy generation costs and implement the optimal power allocation of dispatchable DERs. Specifically, the approach not only inherits the fast computational speed of ADMM but also uses barrier function and virtual agent to handle inequality and equality, respectively. Moreover, the approach requires no coordination center and only the communication between current agent and adjacent agent to achieve totally distributed solution for every iteration, which can preserve information privacy well. Finally, a 30-node microgrid system is used for case analysis, and the simulation results demonstrate the feasibility and effectiveness of the proposed approach. It can be found that, the proposed approach converges to the optima when p = 0.01, v = 100, t0 = 0.01 and μ = 2.

Funder

Key Research and Development Program of Zhejiang Province

The Energy Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3