Inhibition of Calpain Attenuates Degeneration of Substantia Nigra Neurons in the Rotenone Rat Model of Parkinson’s Disease

Author:

Zaman Vandana,Drasites Kelsey P.,Myatich Ali,Shams RamshaORCID,Shields Donald C.,Matzelle Denise,Haque AzizulORCID,Banik Narendra L.

Abstract

In the central nervous system (CNS), calcium homeostasis is a critical determinant of neuronal survival. Calpain, a calcium-dependent neutral protease, is widely expressed in the brain, including substantia nigra (SN) dopaminergic (DA) neurons. Though calpain is implicated in human Parkinson’s disease (PD) and corresponding animal models, the roles of specific ubiquitous calpain isoforms in PD, calpain-1 and calpain-2, remain poorly understood. In this study, we found that both isoforms are activated in a nigrostriatal pathway with increased phosphorylated synuclein following the administration of rotenone in Lewis rats, but calpain isoforms played different roles in neuronal survival. Although increased expression of calpain-1 and calpain-2 were detected in the SN of rotenone-administered rats, calpain-1 expression was not altered significantly after treatment with calpain inhibitor (calpeptin); this correlated with neuronal survival. By contrast, increased calpain-2 expression in the SN of rotenone rats correlated with neuronal death, and calpeptin treatment significantly attenuated calpain-2 and neuronal death. Calpain inhibition by calpeptin prevented glial (astroglia/microglia) activation in rotenone-treated rats in vivo, promoted M2-type microglia, and protected neurons. These data suggest that enhanced expression of calpain-1 and calpain-2 in PD models differentially affects glial activation and neuronal survival; thus, the attenuation of calpain-2 may be important in reducing SN neuronal loss in PD.

Funder

Veterans Administration

South Carolina Spinal Cord Injury Research Fund

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3