Conjunctival Fluid Secretion Impairment via CaCC-CFTR Dysfunction Is the Key Mechanism in Environmental Dry Eye

Author:

Zhang JinyuORCID,Lin Limian,Chen Xiaomin,Wang Shuyi,Wei Yuan,Zhou Wenliang,Yang Shuangjian,Zhou Shiyou

Abstract

Dry eye disease (DED) is a multifactorial disease with an incidence of approximately 50% worldwide. DED seriously affects quality of life and work. The prevalence of environmental DED (eDED) ranges from 35 to 48%. Conjunctival fluid secretion dysfunction may be one of the major causes of DED. Notably, the Cl– flux corresponds to the conjunctival fluid secretion and could be affected by ATP. Both the cystic fibrosis transmembrane conductance regulator (CFTR) and the Ca2+-activated Cl– channel (CaCC) are Cl– channels involved in epithelial fluid secretion. Conjunctival fluid secretion could be increased by activating P2Y2R (an ATP receptor) in DED. However, the role of the CaCC and CFTR channels regulated by P2Y2R in eDED remains unclear. In this study, we established a rabbit eDED model using a controlled drying system. A Ussing chamber was used to perform a conjunctival short-circuit current induced by ATP to evaluate the reactivity of the ion channels to the ATP. Our results revealed that eDED accompanied by conjunctival fluid secretion impairment was caused by a P2Y2R dysfunction, which is related to CaCC-CFTR signaling in the conjunctiva epithelium. Notably, the coupling effect of the ATP-induced CaCC-CFTR activation and intracellular Ca2+ may represent a promising therapeutic target for treating eDED.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3