Biomechanical Forces Determine Fibroid Stem Cell Transformation and the Receptivity Status of the Endometrium: A Critical Appraisal

Author:

Celik OnderORCID,Celik Nilufer,Gungor Nur DokuzeylulORCID,Celik Sudenaz,Arslan Liya,Morciano AndreaORCID,Tinelli AndreaORCID

Abstract

Myometrium cells are an important reproductive niche in which cyclic mechanical forces of a pico-newton range are produced continuously at millisecond and second intervals. Overproduction and/or underproduction of micro-forces, due to point or epigenetic mutation, aberrant methylation, and abnormal response to hypoxia, may lead to the transformation of fibroid stem cells into fibroid-initiating stem cells. Fibroids are tumors with a high modulus of stiffness disturbing the critical homeostasis of the myometrium and they may cause unfavorable and strong mechanical forces. Micro-mechanical forces and soluble-chemical signals play a critical role in transcriptional and translational processes’ maintenance, by regulating communication between the cell nucleus and its organelles. Signals coming from the external environment can stimulate cells in the format of both soluble biochemical signals and mechanical ones. The shape of the cell and the plasma membrane have a significant character in sensing electro-chemical signals, through specialized receptors and generating responses, accordingly. In order for mechanical signals to be perceived by the cell, they must be converted into biological stimuli, through a process called mechanotransduction. Transmission of fibroid-derived mechanical signals to the endometrium and their effects on receptivity modulators are mediated through a pathway known as solid-state signaling. It is not sufficiently clear which type of receptors and mechanical signals impair endometrial receptivity. However, it is known that biomechanical signals reaching the endometrium affect epithelial sodium channels, lysophosphatidic acid receptors or Rho GTPases, leading to conformational changes in endometrial proteins. Translational changes in receptivity modulators may disrupt the selectivity and receptivity functions of the endometrium, resulting in failed implantation or early pregnancy loss. By hypermethylation of the receptivity genes, micro-forces can also negatively affect decidualization and implantation. The purpose of this narrative review is to summarize the state of the art of the biomechanical forces which can determine fibroid stem cell transformation and, thus, affect the receptivity status of the endometrium with regard to fertilization and pregnancy.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3