Abstract
Atherosclerosis is an inflammatory disease depending on the buildup, called plaque, of lipoproteins, cholesterol, extracellular matrix elements, and various types of immune and non-immune cells on the artery walls. Plaque development and growth lead to the narrowing of the blood vessel lumen, blocking blood flow, and eventually may lead to plaque burst and a blood clot. The prominent cellular components of atherosclerotic plaque are the foam cells, which, by trying to remove lipoprotein and cholesterol surplus, also participate in plaque development and rupture. Although the common knowledge is that the foam cells derive from macrophages, studies of the last decade clearly showed that macrophages are not the only cells able to form foam cells in atherosclerotic plaque. These findings give a new perspective on atherosclerotic plaque formation and composition and define new targets for anti-foam cell therapies for atherosclerosis prevention. This review gives a concise description of foam cells of different pedigrees and describes the main mechanisms participating in their formation and function.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献