Severe Obstructive Sleep Apnea Disrupts Vigilance-State-Dependent Metabolism

Author:

Schmidt FelixORCID,Nowak Nora,Baumgartner Patrick,Gaisl ThomasORCID,Malesevic Stefan,Streckenbach Bettina,Sievi Noriane A.,Schwarz Esther I.ORCID,Zenobi Renato,Brown Steven A.,Kohler Malcolm

Abstract

The direct pathophysiological effects of obstructive sleep apnea (OSA) have been well described. However, the systemic and metabolic consequences of OSA are less well understood. The aim of this secondary analysis was to translate recent findings in healthy subjects on vigilance-state-dependent metabolism into the context of OSA patients and answer the question of how symptomatic OSA influences metabolism and whether these changes might explain metabolic and cardiovascular consequences of OSA. Patients with suspected OSA were assigned according to their oxygen desaturation index (ODI) and Epworth Sleepiness Scale (ESS) score into symptomatic OSA and controls. Vigilance-state-dependent breath metabolites assessed by high-resolution mass spectrometry were used to test for a difference in both groups. In total, 44 patients were eligible, of whom 18 (40.9%) were assigned to the symptomatic OSA group. Symptomatic OSA patients with a median [25%, 75% quartiles] ODI of 40.5 [35.0, 58.8] events/h and an ESS of 14.0 [11.2, 15.8] showed moderate to strong evidence for differences in 18 vigilance-state-dependent breath compounds compared to controls. These identified metabolites are part of major metabolic pathways in carbohydrate, amino acid, and lipid metabolism. Thus, beyond hypoxia per se, we hypothesize that disturbed sleep in OSA patients persists as disturbed sleep-dependent metabolite levels during daytime.

Funder

Evi-Diethelm-Winteler-Foundation

Swiss National Science Foundation

Human Frontiers Science Program

Zürich Exhalomics flagship project of the Zürich University Hospital

Heidi-Ras-Foundation

Zurich Exhalomics project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference42 articles.

1. Berry, R., Quan, S., and Abreu, A. (2020). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, American Academy of Sleep Medicine.

2. Sleep Homeostasis and Models of Sleep Regulation;J. Biol. Rhythm.,1999

3. A two process model of sleep regulation;Hum. Neurobiol.,1982

4. Timing of human sleep: Recovery process gated by a circadian pacemaker;Am. J. Physiol.,1984

5. Rapid and reversible control of human metabolism by individual sleep states;Cell Rep.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3