Coastal Adaptation Pathways and Tipping Points for Typical Mediterranean Beaches under Future Scenarios

Author:

Sánchez-Arcilla Agustín1,Gracia Vicente1ORCID,Sánchez-Arcilla Agustín1ORCID

Affiliation:

1. Laboratori d’Enginyeria Marítima, LIM/UPC, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Jordi Girona, 1, Campus Nord UPC, 08034 Barcelona, Spain

Abstract

Coastal zones experience increasing climatic and human pressures, which lead to growing risks and tipping points (TPs) under future scenarios and natural resource scarcity. To avoid crossing TPs with irreversible coastal losses, this paper proposes the development of adaptation pathways based on advanced coastal oceanography and engineering knowledge that enables a comprehensive assessment of evolving coastal risks. These pathways feature sequential interventions steered by simulations and observations as a function of available coastal resources (mainly space and sediment) and risks for infrastructure and socioeconomic assets. Such an adaptation has been developed for urban and peri-urban Mediterranean beaches, considering conventional coastal engineering together with nature-based solutions (NbS). Both types of interventions are assessed in terms of key physical variables, which serve to evaluate performance and estimate TPs. This analysis supports the new coastal protection and management plan promoted by the regional government of Catalonia and the coastal adaptation plan of the central government of Spain. The approach and results illustrate the potential of adaptation pathways for beach sustainability, enhancing the compatibility between short-/long-term coastal protection objectives under present/future climate and management scenarios. The development of adaptation pathways underpins increasing stakeholder cooperation to achieve shared decisions for coastal sustainability.

Funder

European Union’s Horizon 2020 Innovation Action

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3