Affiliation:
1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
2. Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
Abstract
This article addresses the containment control issue for multi-AUV systems with the intervention of both external disturbance and input saturation. Firstly, a distributed estimator is established for the sake of acquiring precise estimation information of the desired position and its derivative for each follower AUV in the system. Next, on the basis of the proposed distributed estimator, a virtual control law is designed for each follower AUV. Then, due to the difficulty in obtaining accurate information about the derivative of the virtual control law, a linear tracking differentiator is introduced. Additionally, a disturbance observer is employed to tackle the composite disturbance, which mainly contains the internal model uncertainties and external bounded disturbances. Meanwhile, the issue of input saturation is handled by constructing the auxiliary system. Furthermore, a containment control law is designed with the assistance of the introduced linear tracking differentiator, the established disturbance observer, and the constructed auxiliary system. Additionally, the Lyapunov stability theory is applied to analyze the stability of the multi-AUV system. Finally, simulation results are given to confirm the feasibility of the proposed containment control scheme.
Funder
National Natural Science Foundation of China
Nature Science Foundation of Shandong province