Affiliation:
1. School of Civil Engineering, Chongqing Jiaotong University, Chongqiong 400074, China
Abstract
With the increase in heavy-load traffic and the growing frequency of extreme weather events, traditional rock aggregates, due to poor morphological stability, are unable to meet the performance requirements of high-grade asphalt pavements in complex environments. Most existing research on metal reinforcement focuses on fiber forms. This study innovatively introduces L-shaped multi-faceted metal aggregates (LFMAs). Through surface energy analysis and tests such as the Marshall test, rutting test, water immersion Marshall test, and freeze–thaw splitting test, the effects of the dosage and particle size of LFMAs on the performance of asphalt mixtures are explored. The results show that LFMAs can form an effective bond with SBS modified asphalt, improving the high-temperature stability and low-temperature crack resistance of asphalt mixtures. Under both water immersion and freeze–thaw conditions, the resistance of asphalt mixtures to water damage decreases with the increase in the dosage of metal aggregates. This research expands the application of three-dimensional metal aggregates, breaks through the limitations of fiber-based materials, and provides a new direction for the development of high-performance asphalt mixtures.
Funder
Science and Technology Research Project of the Chongqing Municipal Education Commission
General Project of the Chongqing Natural Science Foundation