Investigating the Magnetotelluric Responses in Electrical Anisotropic Media

Author:

Luo Tianya,Hu XiangyunORCID,Chen LongweiORCID,Xu Guilin

Abstract

When interpreting magnetotelluric (MT) data, because of the inherent anisotropy of the earth, considering electrical anisotropy is crucial. Accordingly, using the edge-based finite element method, we calculated the responses of MT data for electrical isotropic and anisotropic models, and subsequently used the anisotropy index and polar plot to depict MT responses. High values of the anisotropy index were mainly yielded at the boundary domains of anomalous bodies for isotropy cases because the conductive differences among isotropic anomalous bodies or among anomalous bodies and background earth can be regarded as macro-anisotropy. However, they only appeared across anomalous bodies in the anisotropy cases. The anisotropy index can directly differentiate isotropy from anisotropy but exhibits difficulty in reflecting the azimuth of the principal conductivities. For the isotropy cases, polar plots are approximately circular and become curves with a big ratio of the major axis to minor axis, such as an 8-shaped curve for the anisotropic earth. Furthermore, the polar plot can reveal the directions of principal conductivities. However, distorted by anomalous bodies, polar plots with a large ratio of the major axis to minor axis occur in isotropic domains around the anomalous bodies, which may lead to the misinterpretation of these domains as anisotropic earth. Therefore, combining the anisotropy index with a polar plot facilitates the identification of the electrical anisotropy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Hubei Subsurface Multi-scale Imaging Key La-boratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3