Assessing the Efficacy of PLGA-Loaded Antimicrobial Peptide OH-CATH30 Microspheres for the Treatment of Bacterial Keratitis: A Promising Approach

Author:

Jiao Xiaoqian1,Dong Xufeng1,Shan Hu1,Qin Zhihua1

Affiliation:

1. College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China

Abstract

Bacterial keratitis in animals presents challenges due to ocular structural barriers, hindering effective drug delivery. In this study, we used biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) to encapsulate the naturally occurring antimicrobial peptide OH-CATH30, an alternative to conventional antibiotics, for the treatment of bacterial keratitis in animals. Microspheres (MS) were prepared using a modified water-in-oil-in-water (W/O/W) double-emulsion method with optimized osmotic pressure. We conducted comprehensive evaluations, including in vitro characterization, encapsulation efficiency determination, in vitro release kinetics, and in vivo/vitro assessments of irritation and bacterial inhibition. The optimized method yielded microspheres with impressive encapsulation efficiency of 75.2 ± 3.62% and a loading capacity of 18.25 ± 5.73%, exhibiting a well-defined particle size distribution (200–1000 nm) and a ζ-potential of −17.3 ± 1.91 mV. The microspheres demonstrated initial burst release followed by sustained and controlled release in vitro. Both in vitro and in vivo tolerance tests confirmed the biocompatibility of the drug-loaded microspheres, as they did not elicit significant irritation in ocular tissues. Remarkable antibacterial effects were observed in both in vitro and in vivo experiments. Our developed PLGA microspheres show promise as an alternative therapeutic option for topical administration in managing keratitis, offering exceptional drug delivery capabilities, improved bioavailability, and potent antibacterial efficacy.

Funder

Horizontal Project of Qingdao Agricultural University

Shandong Province, “Double-Hundred Talent Plan”

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3