Abstract
Coating the catalyst with a nanoporous layer has been demonstrated to be an effective approach to improve catalyst stability. Herein, we systematically investigate two types of core-shell mesoporous silica nanoparticles with a platinum nanocatalyst using a variety of characterization methods. One of the mesoporous particles has a unique amine ring structure in the middle of a shell (Ring-mSiO2/Pt-5.0/SiO2), and the other one has no ring structure (mSiO2/Pt-5.0/SiO2). Brunauer–Emmett–Teller/Barrett–Joyner–Halenda (BET/BJH) presented a similar surface area for both particles, and the pore size was 2.4 nm. Ultra-Small-Angle X-ray Scattering (USAXS)/ Small-Angle X-ray Scattering (SAXS) showed the size of mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2 were 420 nm and 272 nm, respectively. It also showed that the ring structure was 30 nm above the silica core. Using high-resolution Transmission Electron Microscopy (TEM), it was found that the platinum nanoparticles are loaded evenly on the surface of the silica. In situ SAXS heating experiments and Thermogravimetric Analysis (TGA) indicated that the mSiO2/Pt-5.0/SiO2 were more stable during the high temperature, while the Ring-mSiO2/Pt-5.0/SiO2 had more change in the particle.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献