Biomass-Derived Carbon Anode for High-Performance Microbial Fuel Cells

Author:

Moradian Jamile MohammadiORCID,Wang Songmei,Ali AmjadORCID,Liu Junying,Mi JianliORCID,Wang Hongcheng

Abstract

Although microbial fuel cells (MFCs) have been developed over the past decade, they still have a low power production bottleneck for practical engineering due to the ineffective interfacial bioelectrochemical reaction between exoelectrogens and anode surfaces using traditional carbonaceous materials. Constructing anodes from biomass is an effective strategy to tackle the current challenges and improve the efficiency of MFCs. The advantage features of these materials come from the well-decorated aspect with an enriched functional group, the turbostratic nature, and porous structure, which is important to promote the electrocatalytic behavior of anodes in MFCs. In this review article, the three designs of biomass-derived carbon anodes based on their final products (i.e., biomass-derived nanocomposite carbons for anode surface modification, biomass-derived free-standing three-dimensional carbon anodes, and biomass-derived carbons for hybrid structured anodes) are highlighted. Next, the most frequently obtained carbon anode morphologies, characterizations, and the carbonization processes of biomass-derived MFC anodes were systematically reviewed. To conclude, the drawbacks and prospects for biomass-derived carbon anodes are suggested.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3