Abstract
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts. Herein, the present review focused on the recent progress of CO2 methanation and the key parameters of catalysts including the essential nature of nickel active sites, supports, promoters, and preparation methods, and elucidated the reaction mechanism on Ni-based catalysts. The design and preparation of catalysts with high activity and stability at low temperature as well as the investigation of the reaction mechanism are important areas that deserve further study.
Funder
National Key R and D Program of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献