Cr-Containing Rare-Earth Substituted Yttrium Iron Garnet Ferrites: Catalytic Properties in the Ethylbenzene Oxidation

Author:

do Carmo José Vitor C.,de Cássia F. Bezerra Rita,Guerra Y.,Peña-Garcia R.,Oliveira Alcineia C.ORCID,Padron-Hernandez E.ORCID,Saraiva Gilberto D.ORCID,Soares João M.,Castro Antonio Joel R.,Tehuacanaero-Cuapa SamuelORCID,Rodríguez-Aguado Elena,Rodríguez-Castellón EnriqueORCID

Abstract

A series of the Cr-containing erbium substituted yttrium iron garnet ferrites (ECYIG) was synthesized with distinct Cr amounts, herein referred to as Y3(Er0.02Fe5Cr1−x)O12, where x refers to Cr amounts from 0 to 0.05. The catalytic performance of the solids was investigated in ethylbenzene oxidation in the presence of hydrogen peroxide to assess the role of Cr and Er present in the YIG garnet lattice for fine chemistry compound production. Raman spectroscopy, HRTEM, EPR and FTIR revealed that the insertion of Er (at a fixed amount of 2%) in dodecahedral sites had a great impact on the catalytic activity of the garnets. Both Er3+ and Y3+ in the lattice simultaneously provided structural stability to the garnet structure in any harsh environment. XPS and EPR indicated that the Cr3+ ions replaced those of Fe3+ located in both octahedral and tetrahedral sites of the YIG garnets. The Cr3+ ions acted as electronic promoter to increase the oxidation rate of the Fe3+ active species responsible for activating the EB molecule. SEM-EDS demonstrated that the solids having Cr amounts lower than 4% experienced the most severe deactivation due to the Cr leaching and strong carbon species adsorption on the surface of the catalysts, which decreased their efficiency in the reaction.

Funder

National Council for Scientific and Technological Development

Ministerio de Ciencia y Tecnología

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3