Recent Progress on Sulfated Nanozirconia as a Solid Acid Catalyst in the Hydrocracking Reaction

Author:

Sekewael Serly Jolanda,Pratika Remi AyuORCID,Hauli LatifahORCID,Amin Amalia KurniaORCID,Utami Maisari,Wijaya Karna

Abstract

Zirconia has advantageous thermal stability and acid–base properties. The acidity character of ZrO2 can be enhanced through the sulfation process forming sulfated zirconia (ZrO2-SO4). An acidity test of the catalyst produced proved that the sulfate loading succeeded in increasing the acidity of ZrO2 as confirmed by the presence of characteristic absorptions of the sulfate group from the FTIR spectra of the catalyst. The ZrO2-SO4 catalyst can be further modified with transition metals, such as Platinum (Pt), Chromium (Cr), and Nickel (Ni) to increase catalytic activity and catalyst stability. It was observed that variations in the concentrations of Pt, Cr, and Ni produced a strong influence on the catalytic activity as the acidity and porosity of the catalyst increased with their addition. The activity, selectivity, and catalytic stability tests of Pt/ZrO2-SO4, Cr/ZrO2-SO4 and Ni/ZrO2-SO4 were carried out with their application in the hydrocracking reaction to produce liquid fuel. The percentage of liquid fractions produced using these catalysts were higher than the fraction produced using pure ZrO2 and ZrO2-SO4 catalyst.

Funder

Gadjah Mada University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3