Bio-Inspired Optimization-Based Path Planning Algorithms in Unmanned Aerial Vehicles: A Survey

Author:

Poudel Sabitri1ORCID,Arafat Muhammad Yeasir1ORCID,Moh Sangman1ORCID

Affiliation:

1. Department of Computer Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea

Abstract

Advancements in electronics and software have enabled the rapid development of unmanned aerial vehicles (UAVs) and UAV-assisted applications. Although the mobility of UAVs allows for flexible deployment of networks, it introduces challenges regarding throughput, delay, cost, and energy. Therefore, path planning is an important aspect of UAV communications. Bio-inspired algorithms rely on the inspiration and principles of the biological evolution of nature to achieve robust survival techniques. However, the issues have many nonlinear constraints, which pose a number of problems such as time restrictions and high dimensionality. Recent trends tend to employ bio-inspired optimization algorithms, which are a potential method for handling difficult optimization problems, to address the issues associated with standard optimization algorithms. Focusing on these points, we investigate various bio-inspired algorithms for UAV path planning over the past decade. To the best of our knowledge, no survey on existing bio-inspired algorithms for UAV path planning has been reported in the literature. In this study, we investigate the prevailing bio-inspired algorithms extensively from the perspective of key features, working principles, advantages, and limitations. Subsequently, path planning algorithms are compared with each other in terms of their major features, characteristics, and performance factors. Furthermore, the challenges and future research trends in UAV path planning are summarized and discussed.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference102 articles.

1. Residual energy-based clustering in UAV-aided wireless sensor networks for surveillance and monitoring applications;Poudel;J. Surveill. Secur. Saf.,2021

2. Reliable UAV Monitoring System Using Deep Learning Approaches;Cai;IEEE Trans. Reliab.,2022

3. Localization and Clustering Based on Swarm Intelligence in UAV Networks for Emergency Communications;Arafat;IEEE Internet Things J.,2019

4. Location-Aided Delay Tolerant Routing Protocol in UAV Networks for Post-Disaster Operation;Arafat;IEEE Access,2018

5. Topology control algorithms in multi-unmanned aerial vehicle networks: An extensive survey;Alam;J. Netw. Comput. Appl.,2022

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3