Syngas Quality in Fluidized Bed Gasification of Biomass: Comparison between Olivine and K-Feldspar as Bed Materials

Author:

Vincenti Beatrice12ORCID,Gallucci Francesco1ORCID,Paris Enrico12ORCID,Carnevale Monica1,Palma Adriano1ORCID,Salerno Mariangela1,Cava Carmine2ORCID,Palone Orlando2,Agati Giuliano2ORCID,Caputi Michele Vincenzo Migliarese2,Borello Domenico2ORCID

Affiliation:

1. Council for Agricultural Research and Economics (CREA), 00015 Rome, Italy

2. Department of Mechanical and Aerospace Engineering, La Sapienza University of Rome, 00185 Rome, Italy

Abstract

The relevance of selecting an appropriate bed material in fluidized bed gasification is a crucial aspect that is often underestimated. The ideal material should be economical, resistant to high temperatures and have small chemical interaction with biomass. However, often only the first of such three aspects is considered, neglecting the biomass–bed interaction effects that develop at high temperatures. In this work, olivine and K-feldspar were upscale-tested in a prototype fluidized bed gasifier (FBG) using arboreal biomass (almond shells). The produced syngas in the two different tests was characterized and compared in terms of composition (H2, CH4, CO, CO2, O2) and fate of contaminants such as volatile organic compounds (VOCs), tar and metals.. Moreover, the composition of olivine and K-feldspar before and after the biomass gasification process has been characterized. The aim of this work is to show which advantages and disadvantages there are in choosing the most suitable material and to optimize the biomass gasification process by reducing the undesirable effects, such as heavy metal production, bed agglomeration and tar production, which are harmful when syngas is used in internal combustion engines (ICE). It has been observed that metals, such as Ni, Cu, Zn, Cd, Sn, Ba and Pb, have higher concentrations in the syngas produced by using olivine as bed material rather than K-feldspar. In particular, heavy metals, such as Pb, Cu, Cd, Ni and Zn, show concentrations of 61.06 mg/Nm3, 15.29 mg/Nm3, 17.97 mg/Nm3, 37.29 mg/Nm3 and 116.39 mg/Nm3, respectively, compared to 23.26 mg/Nm3, 11.82 mg/Nm3, 2.76 mg/Nm3, 24.46 mg/Nm3 and 53.07 mg/Nm3 detected with K-feldspar. Moreover, a more hydrogen-rich syngas when using K-feldspar was produced (46% compared to 39% with olivine).

Funder

Italian Minister of Agriculture, Food Sovereignty and Forests (MASAF) under the AGROENER

Tecnologie digitali integrate per il rafforzamento sostenibile di produzioni e trasformazioni agroalimentari

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3