Season, Vegetation Proximity and Building Age Shape the Indoor Fungal Communities’ Composition at City-Scale

Author:

Niculita-Hirzel HélèneORCID,Wild Pascal,Hirzel Alexandre H.

Abstract

Exposure to particular microbiome compositions in the built environment can affect human health and well-being. Identifying the drivers of these indoor microbial assemblages is key to controlling the microbiota of the built environment. In the present study, we used culture and metabarcoding of the fungal Internal Transcribed Spacer ribosomal RNA region to assess whether small-scale variation in the built environment influences the diversity, composition and structure of indoor air fungal communities between a heating and an unheated season. Passive dust collectors were used to collect airborne fungi from 259 dwellings representative of three major building periods and five building environments in one city—Lausanne (Vaud, Switzerland)—over a heating and an unheated period. A homogenous population (one or two people with an average age of 75 years) inhabited the households. Geographic information systems were used to assess detailed site characteristics (altitude, proximity to forest, fields and parks, proximity to the lake, and density of buildings and roads) for each building. Our analysis indicated that season was the factor that explained most of the variation in colonies forming unit (CFU) concentration and indoor mycobiome composition, followed by the period of building construction. Fungal assemblages were more diverse during the heating season than during the unheated season. Buildings with effective insulation had distinct mycobiome compositions from those built before 1975 — regardless of whether they were constructed with pre-1945 technology and materials or 1945 — 1974 ones. The urban landscape—as a whole—was a significant predictor of cultivable Penicillium load—the closer the building was to the lake, the higher the Penicillium load—but not of fungal community composition. Nevertheless, the relative abundance of eleven fungal taxa detected by metabarcoding decreased significantly with the urbanization gradient. When urban landscape descriptors were analyzed separately, the explanatory power of proximity to vegetation in shaping fungal assemblages become significant, indicating that land cover type had an influence on fungal community structure that was obscured by the effects of building age and sampling season. In conclusion, indoor mycobiomes are strongly modulated by season, and their assemblages are shaped by the effectiveness of building insulation, but are weakly influenced by the urban landscape.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3