Transcriptomic Analysis Reveals Patterns of Expression of Stage-Specific Genes in Early Apis cerana Embryos

Author:

Su Runlang123,Chen Yuhui23,Zhu Rui23,Ding Guiling23,Dong Kun1,Feng Mao23,Huang Jiaxing123ORCID

Affiliation:

1. College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China

2. State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China

3. Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China

Abstract

Background/Objectives: Apis cerana development is described as comprising four stages: embryo, larva, pupa, and adult. There are significant differences between workers and drones in terms of physiological functions and social roles, and the formation of the organ primordia occurs during the embryonic stage. Therefore, the objective of this study is to investigate the differential expression of and alternative splicing of genes in worker and drone embryos and to explain their unique developmental patterns. Methods: Long-read sequencing (PacBio Iso-Seq) and short-read sequencing (Illumina RNA-Seq) were used to investigate worker and drone embryo gene expression differences in A. cerana across five developmental points (12, 24, 36, 48, and 60 h). Results: The study identified 59,254 common isoforms, with 5744 and 5106 isoforms specific to worker and drone embryos, respectively. Additionally, a new transcript of the csd gene was identified. The number of differentially expressed genes (3391) and differential splicing events (470 genes) peaked at the 24-h embryonic stage. Differential splicing events of csd, dsx, and Y-y were observed in the worker and drone embryos. Conclusions: The gene expression results indicated that the 24-h embryonic point is a critical period for the expression of genes related to developmental and behavioral differences between workers and drones. The findings provide a theoretical basis for future research on the developmental differences between workers and drones.

Funder

National Key R&D Program of China

Science and Technology Plan of Yunnan Province Project

China Agriculture Research System-Bee

Agricultural Science and Technology Innovation Program, Chinese Academy of Agricultural Sciences

China Agriculture Research Institute of Bees

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3