Sustainability Economic Production Quantity with Warm-Up Function for a Defective Production System

Author:

Nobil Erfan,Cárdenas-Barrón Leopoldo EduardoORCID,Loera-Hernández Imelda de JesúsORCID,Smith Neale R.,Treviño-Garza Gerardo,Céspedes-Mota ArmandoORCID,Nobil Amir HosseinORCID

Abstract

Inventory management seeks to improve manufacturing by contracting inventory costs in a similar fashion to raise efficiency and profit. One approach is to develop inventory management models according to actual production systems. Furthermore, governmental policies in many countries impose many regulations on firms to fulfill the growing demand for a reduction in carbon emissions. Warm-up is a familiar concept in industrial applications. It allows the manufacturing system to work at a higher level of productivity and efficiency, as well as decreasing the number of defective items and maintenance costs. Along with fewer poor-quality items, the system has less waste as scrap items entering the environment and also requires less energy and workload to focus on reworking. The economic production quantity (EPQ) problems with a warm-up as an input parameter have been studied in a few works recently. This paper proposes a production-inventory model which considers the warm-up period as a decision variable and investigates its impact on the total cost. Furthermore, the defective rate is a decreasing linear function related to the warm-up period’s length. The production-inventory model takes into account the carbon emission tax policy. The main aim of this research is to jointly optimize both the length of the warm-up period and the production cycle in order to minimize the total cost of the production-inventory system and, therefore, reduce emitted carbon emissions. The comparison of tax prices and the effect of the proper warm-up period on the amount of carbon emissions are discussed in the sensitivity analysis.

Funder

Tecnológico de Monterrey

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3