Photoreactor-Initiated Acetaldehyde Conversion Rate of a TiO2-Surface-Treated Alumina Photocatalyst Prepared Using the Sol–Gel Method

Author:

Kim Su Jin,Kim Eun Mi,Jeon Hee Kyung,Kale Shital Bhaskar,Choi Jeong Yeon,Kim Jin Hyeok

Abstract

In this study, a TiO2–alumina photocatalyst was manufactured by coating a surface-treated alumina substrate with TiO2 sol using the sol–gel method, and the photolysis and conversion of acetaldehyde in the gas phase were evaluated. The effects of acetaldehyde flow rate (i.e., retention time), ultraviolet wavelength, moisture, and catalyst heat-treatment temperature on the conversion of acetaldehyde were investigated. The experiments confirmed that a decrease in flow rate (i.e., increase in retention time), increase in moisture level, and decrease in the ultraviolet wavelength of the light source increased the conversion rate of the gaseous acetaldehyde. Among the three heat-treatment temperatures (450, 650, and 850 °C) used in the catalyst manufacturing process, the catalyst treated at 650 °C had the highest acetaldehyde conversion rate. As a result of its increased acetaldehyde decomposition and photoefficiency, the newly manufactured TiO2–alumina photocatalyst is expected to be used alongside a photoreactor as an air-purifying filter. Furthermore, the photocatalyst surface treatment demonstrated herein can be adopted to fabricate various environmentally friendly materials in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3