Abstract
With the massive growth of the Internet, text data has become one of the main formats of tourism big data. As an effective expression means of tourists’ opinions, text mining of such data has big potential to inspire innovations for tourism practitioners. In the past decade, a variety of text mining techniques have been proposed and applied to tourism analysis to develop tourism value analysis models, build tourism recommendation systems, create tourist profiles, and make policies for supervising tourism markets. The successes of these techniques have been further boosted by the progress of natural language processing (NLP), machine learning, and deep learning. With the understanding of the complexity due to this diverse set of techniques and tourism text data sources, this work attempts to provide a detailed and up-to-date review of text mining techniques that have been, or have the potential to be, applied to modern tourism big data analysis. We summarize and discuss different text representation strategies, text-based NLP techniques for topic extraction, text classification, sentiment analysis, and text clustering in the context of tourism text mining, and their applications in tourist profiling, destination image analysis, market demand, etc. Our work also provides guidelines for constructing new tourism big data applications and outlines promising research areas in this field for incoming years.
Funder
National Natural Science Foundation of China
Science and Technology Project of Guizhou Province
Collaborative Innovation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献