Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review

Author:

Rai Pratik,Robinson Lucy,Davies Hannah A.,Akhtar RiazORCID,Field Mark,Madine Jillian

Abstract

Altered proteoglycan (PG) and glycosaminoglycan (GAG) distribution within the aortic wall has been implicated in thoracic aortic aneurysm and dissection (TAAD). This review was conducted to identify literature reporting the presence, distribution and role of PGs and GAGs in the normal aorta and differences associated with sporadic TAAD to address the question; is there enough evidence to establish the role of GAGs/PGs in TAAD? 75 studies were included, divided into normal aorta (n = 51) and TAAD (n = 24). There is contradictory data regarding changes in GAGs upon ageing; most studies reported an increase in GAG sub-types, often followed by a decrease upon further ageing. Fourteen studies reported changes in PG/GAG or associated degradation enzyme levels in TAAD, with most increased in disease tissue or serum. We conclude that despite being present at relatively low abundance in the aortic wall, PGs and GAGs play an important role in extracellular matrix maintenance, with differences observed upon ageing and in association with TAAD. However, there is currently insufficient information to establish a cause-effect relationship with an underlying mechanistic understanding of these changes requiring further investigation. Increased PG presence in serum associated with aortic disease highlights the future potential of these biomolecules as diagnostic or prognostic biomarkers.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of ADAMTS Proteoglycanases in Thoracic Aortic Disease;International Journal of Molecular Sciences;2023-07-28

2. Cell–Material Interactions 2022;International Journal of Molecular Sciences;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3