Prognostic Markers in Tyrosine Kinases Specific to Basal-like 2 Subtype of Triple-Negative Breast Cancer

Author:

Limsakul Praopim12ORCID,Choochuen Pongsakorn3,Jungrungrueang Thawirasm3ORCID,Charupanit Krit3ORCID

Affiliation:

1. Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

2. Center of Excellence for Trace Analysis and Biosensor (TAB-CoE), Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

3. Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand

Abstract

Triple-negative breast cancer (TNBC), a heterogeneous and therapeutically challenging subtype, comprises over 50% of patients categorized into basal-like 1 (BL1) and basal-like 2 (BL2) intrinsic molecular subtypes. Despite their shared basal-like classification, BL2 is associated with a poor response to neoadjuvant chemotherapy and reduced relapse-free survival compared to BL1. Here, the study focused on identifying subtype-specific markers for BL2 through transcriptomic analysis of TNBC patients using RNA-seq and clinical integration. Six receptor tyrosine kinase (TK) genes, including EGFR, EPHA4, EPHB2, PDGFRA, PDGFRB, and ROR1, were identified as potential differentiators for BL2. Correlations between TK mRNA expression and TNBC prognosis, particularly EGFR, PDGFRA, and PDGFRB, revealed potential synergistic interactions in pathways related to cell survival and proliferation. Our findings also suggest promising dual markers for predicting disease prognosis. Furthermore, RT-qPCR validation demonstrated that identified BL2-specific TKs were expressed at a higher level in BL2 than in BL1 cell lines, providing insights into unique characteristics. This study advances the understanding of TNBC heterogeneity within the basal-like subtypes, which could lead to novel clinical treatment approaches and the development of targeted therapies.

Funder

National Science, Research and Innovation Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3