Investigating USP42 Mutation as Underlying Cause of Familial Non-Medullary Thyroid Carcinoma

Author:

Teixeira Elisabete123ORCID,Fernandes Cláudia1245,Bungărdean Maria6ORCID,Paula Arnaud Da Cruz12,Lima Raquel T.127ORCID,Batista Rui12,Vinagre João127ORCID,Sobrinho-Simões Manuel127,Máximo Valdemar127ORCID,Soares Paula127ORCID

Affiliation:

1. Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal

2. Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal

3. Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto—FMUP, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal

4. Departamento de Bioquímica da Faculdade de Ciências da Universidade do Porto—FCUP, Rua do Campo Alegre 1021 1055, 4169-007 Porto, Portugal

5. Departamento de Patologia e Imunologia Molecular do Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto—ICBAS, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal

6. Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, Municipal Clinical Hospital, Cluj-Napoca 400139, Romania

7. Departamento de Patologia da Faculdade de Medicina da Universidade do Porto—FMUP, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal

Abstract

In a family with Familial Non-Medullary Thyroid Carcinoma (FNMTC), our investigation using Whole-Exome Sequencing (WES) uncovered a novel germline USP42 mutation [p.(Gly486Arg)]. USP42 is known for regulating p53, cell cycle arrest, and apoptosis, and for being reported as overexpressed in breast and gastric cancer patients. Recently, a USP13 missense mutation was described in FNMTC, suggesting a potential involvement in thyroid cancer. Aiming to explore the USP42 mutation as an underlying cause of FNMTC, our team validated the mutation in blood and tissue samples from the family. Using immunohistochemistry, the expression of USP42, Caspase-3, and p53 was assessed. The USP42 gene was silenced in human thyroid Nthy-Ori 3-1 cells using siRNAs. Subsequently, expression, viability, and morphological assays were conducted. p53, Cyclin D1, p21, and p27 proteins were evaluated by Western blot. USP42 protein was confirmed in all family members and was found to be overexpressed in tumor samples, along with an increased expression of p53 and cleaved Caspase-3. siRNA-mediated USP42 downregulation in Nthy-Ori 3-1 cells resulted in reduced cell viability, morphological changes, and modifications in cell cycle-related proteins. Our results suggest a pivotal role of USP42 mutation in thyroid cell biology, and this finding indicates that USP42 may serve as a new putative target in FNMTC.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3