Label-Free Liquid Chromatography–Mass Spectrometry Quantitation of Relative N- and O-Glycan Concentrations in Human Milk in Japan

Author:

Yamaguchi Toshiyuki1ORCID,Fukudome Hirofumi1,Higuchi Junichi1,Takahashi Tomoki2ORCID,Tsujimori Yuta2,Ueno Hiroshi M.12ORCID,Toba Yasuhiro2,Sakai Fumihiko1ORCID

Affiliation:

1. Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan

2. Department of Research and Development, Bean Stalk Snow Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan

Abstract

Human milk is abundant in carbohydrates and includes human milk oligosaccharides (HMOs) and N/O-glycans conjugated to proteins. HMO compositions and concentrations vary in individuals according to the maternal secretor status based on the fucosyltransferase 2 genotype; however, the profile of N/O-glycans remains uninvestigated because of the analytical complexity. Herein, we applied a label-free chromatography–mass spectrometry (LC–MS) technique to elucidate the variation in the composition and concentration of N/O-glycans in human milk. We used label-free LC–MS to relatively quantify 16 N-glycans and 12 O-glycans in 200 samples of Japanese human milk (1–2 months postpartum) and applied high performance anion exchange chromatography with pulsed amperometric detection to absolutely quantify the concentrations of 11 representative HMOs. Cluster analysis of the quantitative data revealed that O-glycans and several HMOs were classified according to the presence or absence of fucose linked to galactose while N-glycans were classified into a different group from O-glycans and HMOs. O-glycans and HMOs with fucose linked to galactose were more abundant in human milk from secretor mothers than from nonsecretor mothers. Thus, secretor status influenced the composition and concentration of HMOs and O-glycans but not those of N-glycans in human milk.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3