Evolution and Dynamic Transcriptome of Key Genes of Photoperiodic Flowering Pathway in Water Spinach (Ipomoea aquatica)

Author:

Wang Xin123,Hao Yuanyuan123,Altaf Muhammad Ahsan123ORCID,Shu Huangying123,Cheng Shanhan123,Wang Zhiwei123ORCID,Zhu Guopeng123

Affiliation:

1. Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China

2. Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China

3. Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China

Abstract

The photoperiod is a major environmental factor in flowering control. Water spinach flowering under the inductive short-day condition decreases the yield of vegetative tissues and the eating quality. To obtain an insight into the molecular mechanism of the photoperiod-dependent regulation of the flowering time in water spinach, we performed transcriptome sequencing on water spinach under long- and short-day conditions with eight time points. Our results indicated that there were 6615 circadian-rhythm-related genes under the long-day condition and 8691 under the short-day condition. The three key circadian-rhythm genes, IaCCA1, IaLHY, and IaTOC1, still maintained single copies and similar IaCCA1, IaLHY, and IaTOC1 feedback expression patterns, indicating the conservation of reverse feedback. In the photoperiod pathway, highly conserved GI genes were amplified into two copies (IaGI1 and IaGI2) in water spinach. The significant difference in the expression of the two genes indicates functional diversity. Although the photoperiod core gene FT was duplicated to three copies in water spinach, only IaFT1 was highly expressed and strongly responsive to the photoperiod and circadian rhythms, and the almost complete inhibition of IaFT1 in water spinach may be the reason why water spinach does not bloom, no matter how long it lasts under the long-day condition. Differing from other species (I. nil, I. triloba, I. trifida) of the Ipomoea genus that have three CO members, water spinach lacks one of them, and the other two CO genes (IaCO1 and IaCO2) encode only one CCT domain. In addition, through weighted correlation network analysis (WGCNA), some transcription factors closely related to the photoperiod pathway were obtained. This work provides valuable data for further in-depth analyses of the molecular regulation of the flowering time in water spinach and the Ipomoea genus.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3