Cholesterol Content Regulates the Interaction of αA-, αB-, and α-Crystallin with the Model of Human Lens-Lipid Membranes

Author:

Timsina Raju1,Hazen Preston2ORCID,Trossi-Torres Geraline2ORCID,Khadka Nawal K.1ORCID,Kalkat Navdeep2,Mainali Laxman12

Affiliation:

1. Department of Physics, Boise State University, Boise, ID 83725, USA

2. Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA

Abstract

α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. The maximum percentage of membrane surface occupied (MMSO) by αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trends: MMSO (αAc) > MMSO (αBc) ≈ MMSO (αABc), indicating that a higher amount of αAc binds to these membranes compared to αBc and αABc. However, with an increase in the Chol concentration in the Chol/MHLL membranes, the MMSO by αAc, αBc, and αABc decreases until it is completely diminished at a mixing ratio of 1.5. The Ka of αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trend: Ka (αBc) ≈ Ka (αABc) > Ka (αAc), but it was close to zero with the diminished binding at a Chol/MHLL mixing ratio of 1.5. The mobility near the membrane headgroup regions decreased with αAc, αBc, and αABc binding, and the Chol antagonized the capacity of the αAc, αBc, and αABc to decrease mobility near the headgroup regions. No significant change in membrane order near the headgroup regions was observed, with an increase in αAc, αBc, and αABc concentrations. Our results show that αAc, αBc, and αABc bind differently with Chol/MHLL membranes at mixing ratios of 0 and 0.5, decreasing the mobility and increasing hydrophobicity near the membrane headgroup region, likely forming the hydrophobic barrier for the passage of polar and ionic molecules, including antioxidants (glutathione), creating an oxidative environment inside the lens, leading to the development of cataracts. However, all binding was completely diminished at a mixing ratio of 1.5, indicating that high Chol and CBDs inhibit the binding of αAc, αBc, and αABc to membranes, preventing the formation of hydrophobic barriers and likely protecting against cataract formation.

Funder

National Eye Institute of the National Institutes of Health

National Institutes of Health, NIGMS

Biomolecular Research Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference97 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3