Antimicrobial Activity of Synthetic Enterocins A, B, P, SEK4, and L50, Alone and in Combinations, against Clostridium perfringens

Author:

García-Vela Sara12,Guay Louis-David345ORCID,Rahman Md Ramim Tanver345,Biron Eric345ORCID,Torres Carmen1ORCID,Fliss Ismail23

Affiliation:

1. Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logrono, La Rioja, Spain

2. Department of Food Science, Laval University, Quebec, QC G1V 0A6, Canada

3. Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 0A6, Canada

4. Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada

5. Laboratory of Medicinal Chemistry, CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada

Abstract

Multidrug-resistant Clostridium perfringens infections are a major threat to the poultry industry. Effective alternatives to antibiotics are urgently needed to prevent these infections and limit the spread of multidrug-resistant bacteria. The aim of the study was to produce by chemical synthesis a set of enterocins of different subgroups of class II bacteriocins and to compare their spectrum of inhibitory activity, either alone or in combination, against a panel of twenty C. perfringens isolates. Enterocins A, P, SEK4 (class IIa bacteriocins), B (unsubgrouped class II bacteriocin), and L50 (class IId leaderless bacteriocin) were produced by microwave-assisted solid-phase peptide synthesis. Their antimicrobial activity was determined by agar well diffusion and microtitration methods against twenty C. perfringens isolates and against other pathogens. The FICINDEX of different combinations of the selected enterocins was calculated in order to identify combinations with synergistic effects. The results showed that synthetic analogs of L50A and L50B were the most active against C. perfringens. These peptides also showed the broadest spectrum of activity when tested against other non-clostridial indicator strains, including Listeria monocytogenes, methicillin-resistant Staphylococcus aureus, Streptococcus suis, Streptococcus pyogenes, Enterococcus cecorum, Enterococcus faecalis, as well as Gram-negative bacteria (Campylobacter coli and Pseudomonas aeruginosa), among others. The selected synthetic enterocins were combined on the basis of their different mechanisms of action, and all combinations tested showed synergy or partial synergy against C. perfringens. In conclusion, because of their high activity against C. perfringens and other pathogens, the use of synthetic enterocins alone or as a consortium can be a good alternative to the use of antibiotics in the poultry sector.

Funder

International Development Research Center (IDRC)-Innovet-Initiative [Avibiocin project]

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3