Grid-Based Structural and Dimensional Skin Cancer Classification with Self-Featured Optimized Explainable Deep Convolutional Neural Networks

Author:

Behara Kavita1,Bhero Ernest2ORCID,Agee John Terhile2

Affiliation:

1. Department of Electrical Engineering, Mangosuthu University of Technology, Durban 4031, South Africa

2. Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu Natal, Durban 4041, South Africa

Abstract

Skin cancer is a severe and potentially lethal disease, and early detection is critical for successful treatment. Traditional procedures for diagnosing skin cancer are expensive, time-intensive, and necessitate the expertise of a medical practitioner. In recent years, many researchers have developed artificial intelligence (AI) tools, including shallow and deep machine learning-based approaches, to diagnose skin cancer. However, AI-based skin cancer diagnosis faces challenges in complexity, low reproducibility, and explainability. To address these problems, we propose a novel Grid-Based Structural and Dimensional Explainable Deep Convolutional Neural Network for accurate and interpretable skin cancer classification. This model employs adaptive thresholding for extracting the region of interest (ROI), using its dynamic capabilities to enhance the accuracy of identifying cancerous regions. The VGG-16 architecture extracts the hierarchical characteristics of skin lesion images, leveraging its recognized capabilities for deep feature extraction. Our proposed model leverages a grid structure to capture spatial relationships within lesions, while the dimensional features extract relevant information from various image channels. An Adaptive Intelligent Coney Optimization (AICO) algorithm is employed for self-feature selected optimization and fine-tuning the hyperparameters, which dynamically adapts the model architecture to optimize feature extraction and classification. The model was trained and tested using the ISIC dataset of 10,015 dermascope images and the MNIST dataset of 2357 images of malignant and benign oncological diseases. The experimental results demonstrated that the model achieved accuracy and CSI values of 0.96 and 0.97 for TP 80 using the ISIC dataset, which is 17.70% and 16.49% more than lightweight CNN, 20.83% and 19.59% more than DenseNet, 18.75% and 17.53% more than CNN, 6.25% and 6.18% more than Efficient Net-B0, 5.21% and 5.15% over ECNN, 2.08% and 2.06% over COA-CAN, and 5.21% and 5.15% more than ARO-ECNN. Additionally, the AICO self-feature selected ECNN model exhibited minimal FPR and FNR of 0.03 and 0.02, respectively. The model attained a loss of 0.09 for ISIC and 0.18 for the MNIST dataset, indicating that the model proposed in this research outperforms existing techniques. The proposed model improves accuracy, interpretability, and robustness for skin cancer classification, ultimately aiding clinicians in early diagnosis and treatment.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3