Beneficial Impact of Eicosapentaenoic Acid on the Adverse Effects Induced by Palmitate and Hyperglycemia on Healthy Rat Chondrocyte

Author:

Deng Chaohua12ORCID,Presle Nathalie1,Pizard Anne3ORCID,Guillaume Cécile1,Bianchi Arnaud1ORCID,Kempf Hervé1ORCID

Affiliation:

1. UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, 54500 Vandoeuvre-les-Nancy, France

2. Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

3. INSERM U955, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est-Créteil (UPEC), 94010 Créteil, France

Abstract

Osteoarthritis (OA) is the most prevalent form of arthritis and a major cause of pain and disability. The pathology of OA involves the whole joint in an inflammatory and degenerative process, especially in articular cartilage. OA may be divided into distinguishable phenotypes including one associated with the metabolic syndrome (MetS) of which dyslipidemia and hyperglycemia have been individually linked to OA. Since their combined role in OA pathogenesis remains to be elucidated, we investigated the chondrocyte response to these metabolic stresses, and determined whether a n-3 polyunsaturated fatty acid (PUFA), i.e., eicosapentaenoic acid (EPA), may preserve chondrocyte functions. Rat chondrocytes were cultured with palmitic acid (PA) and/or EPA in normal or high glucose conditions. The expression of genes encoding proteins found in cartilage matrix (type 2 collagen and aggrecan) or involved in degenerative (metalloproteinases, MMPs) or in inflammatory (cyclooxygenase-2, COX-2 and microsomal prostaglandin E synthase, mPGES) processes was analyzed by qPCR. Prostaglandin E2 (PGE2) release was also evaluated by an enzyme-linked immunosorbent assay. Our data indicated that PA dose-dependently up-regulated the mRNA expression of MMP-3 and -13. PA also induced the expression of COX-2 and mPGES and promoted the synthesis of PGE2. Glucose at high concentrations further increased the chondrocyte response to PA. Interestingly, EPA suppressed the inflammatory effects of PA and glucose, and strongly reduced MMP-13 expression. Among the free fatty acid receptors (FFARs), FFAR4 partly mediated the EPA effects and the activation of FFAR1 markedly reduced the inflammatory effects of PA in high glucose conditions. Our findings demonstrate that dyslipidemia associated with hyperglycemia may contribute to OA pathogenesis and explains why an excess of saturated fatty acids and a low level in n-3 PUFAs may disrupt cartilage homeostasis.

Funder

“Impact Biomolecules” project of the “Lorraine Universite d’Excellence”

“la Société Française de Rhumatologie (SFR)”

China Scholarship Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3