Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake via Direct Inhibition of Mitochondrial Malate Dehydrogenase in Mouse 3T3-L1 Cells

Author:

Kubohara Yuzuru1ORCID,Fukunaga Yuko2,Shigenaga Ayako3,Kikuchi Haruhisa4ORCID

Affiliation:

1. Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan

2. Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan

3. Institute of Health and Sports Science & Medicine, Juntendo University, Inzai 270-1695, Japan

4. Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan

Abstract

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography–tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10–40 μM dose-dependently suppressed growth, whereas LW6 at 20 μM, but not at 2–10 μM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10–40 μM significantly promoted glucose uptake, with the strongest effect at 20 μM DIF-1, whereas LW6 at 2–20 μM significantly promoted glucose uptake, with the strongest effect at 10 μM LW6. Western blot analyses showed that LW6 (10 μM) and DIF-1 (20 μM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.

Funder

JSPS KAKENHI Grant

Japan Diabetes Foundation

Joint Research Program of Juntendo University, Faculty of Health and Sports Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3