Author:
Chen Shuai,Mao Xiaomin,Wang Chunying
Abstract
A modified Green-Ampt model was developed to simulate water infiltration in fine-textured soil with a coarse interlayer. Because under such a soil structure, the two soils may not be fully saturated during infiltration, the model introduced two parameters—that is, the saturation coefficients a and b, to reflect the incomplete saturation condition and their influence on infiltration processes. In order to analyze the variation pattern of the two parameters in the above proposed model, scenarios were set for soil column infiltration in fine-textured soil with a coarse interlayer under different buried depths. A Richards equation-based model (RE-Model) was built for simulating the above scenarios and to obtain the evolution of soil water content along the soil profiles. Simulation results show that the infiltration rate decreased to a constant value when the wetting front crossed the upper interface between the fine and coarse soil layer. The soil matrix suction (ψ2) at the upper interface remained unchanged after the wetting front advanced into the coarse layer, and the steady value of ψ2 showed a linear relationship with the buried depth of the coarse layer. Based on the simulation results of the RE-Model, a method was proposed to determine the saturation coefficients related to the relative hydraulic conductivity and water content at ψ2 in the modified Green-Ampt model. Then, the modified model was tested under various infiltration conditions with different soil layered structures, and the results showed good agreement with the experimental data.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献