Effect of Oxidant Concentration on the Oxide Layer Thickness of 304 Stainless Steel

Author:

Wang Kerong12,Liu Haixu1,Liu Ning1,Chen Xiaoming1,Chen Jiapeng1345

Affiliation:

1. Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Mechanical and Electrical Engineering College, Jinhua Polytechnic, Jinhua 321000, China

3. Research Center for Advanced Micro-/Nano-Fabrication Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

4. State Key Laboratory for High Performance Tools, Zhengzhou Abrasive Grinding Research Institute Co., Ltd., Zhengzhou 450001, China

5. State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China

Abstract

Ultra-thin 304 stainless steel can be used to flexibly display substrates after they have been subjected to chemical mechanical polishing (CMP). The thickness of the chemical oxide layer directly affects the polishing efficiency and surface quality of 304 stainless steel. In the study presented in the following paper, the thickness variation of the chemical oxide layer of 304 stainless steel was analyzed following electrochemical corrosion under different oxidant concentration conditions. Furthermore, the impact of the oxidant concentration on the grooves, chips, and scratch depth–displacement–load curves was investigated during a nano-scratching experiment. Through this process, we were able to reveal the chemical reaction mechanism between 304 stainless steel materials and oxidizers. The corrosion rate was found to be faster at 8% oxidant content. The maximum values of the scratch depth and elastic–plastic critical load were determined to be 2153 nm and 58.47 mN, respectively.

Funder

Open Project Funding of the State Key Laboratory for High Performance Tools

Open Project Funding of the State Key Laboratory of Silicon and Advanced Semiconductor Materials

Open Project Funding of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3