Evaluation of the DRAINMOD Model’s Performance Using Different Time Steps in Evapotranspiration Computations

Author:

Awad AhmedORCID,El-Rawy MustafaORCID,Abdalhi Mohmed,Al-Ansari NadhirORCID

Abstract

The DRAINMOD model is a superior tool used to predict the changes in farmland water balance under different agricultural drainage layouts, fields, weather conditions, and management practices. In the present study, we assessed the sensitivity of the DRAINMOD predictions in farmland water balance to the time step (hourly or daily) in daily evapotranspiration (ET₀) computations for 12-hectares of farmland located at the lower reaches of the Yangtze River basin. The model was calibrated and validated and then was applied twice under two sets of daily ET₀ values, computed using the standardized ASCE Penman–Monteith model (one using the hourly time step (HTS) and the other using the daily time step (DTS)). Regarding daily computed ET₀ values, results show that abrupt diurnal changes in the weather always result in significant differences between daily ET₀ values when computed based on DTS and HTS. DRAINMOD simulations show that such differences between daily computed ET₀ values affected the model’s predictions of the “water fate” in the study area; e.g., adopting HTS rather than DTS resulted in a 4.8% increase, and a 3.1% and 1% decrease in the models’ cumulative predictions of runoff, drainage, and infiltration, respectively. Therefore, for a particular study area, it is critical to pay attention when deciding the best time step in ET₀ computations to ensure accurate DRAINMOD simulations, thereby ensuring better utilization of agricultural water alongside high agricultural productivity.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference35 articles.

1. Waterlogging Stress in Plants: A Review;Ashraf;Afr. J. Agric. Res.,2012

2. The Impact of Salinity Stress. PlantStresshttp://www.plantstress.com

3. A Review on Impacts of Agricultural Runoff on Freshwater Resources;Pericherla;Int. J. Emerg. Technol.,2020

4. Drainage, waterlogging, and salinity

5. Agricultural Drainage; Extension Bullefin E3370https://www.canr.msu.edu/agriculture/uploads/files/agriculturaldrainage-2-2-18-web.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3