Expanding Karst Groundwater Tracing Techniques: Incorporating Population Genetic and Isotopic Data to Enhance Flow-Path Characterization

Author:

Tobin Benjamin W.1ORCID,Miller Benjamin V.2,Niemiller Matthew L.3,Erhardt Andrea M.4

Affiliation:

1. Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA

2. Lower Mississippi Gulf Water Science Center, United States Geological Survey, Nashville, TN 37211, USA

3. Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA

4. Earth and Environmental Science, University of Kentucky, Lexington, KY 40506, USA

Abstract

Karst aquifers are unique among groundwater systems because of variable permeability and flow-path organization changes resulting from dissolution processes. Over time, changes in flow-path connectivity complicate interpretations of conduit network evolution in karst hydrogeology. Natural and artificial tracer techniques have long provided critical information for protecting karst aquifers and understanding the potential impacts on ecosystems and human populations. Conventional tracer methods are useful in karst hydrogeologic studies for delineating flow paths and defining recharge, storage, and discharge properties. However, these methods only provide snapshots of the current conditions and do not provide sufficient information to understand the changes in interconnection or larger-scale evolution of flow paths in the aquifer over time. With advances in population genetics, it is possible to assess population connectivity, which may provide greater insights into complex groundwater flow paths. To assess this potential, we combined the more traditional approaches collected in this and associated studies, including artificial (dye) and natural (geochemistry, isotopes, and discharge) tracers, with the population genetic data of a groundwater crustacean to determine whether these data can provide insights into seasonal or longer changes in connections between conduits. The data collected included dye trace, hydrographs, geochemistry, and asellid isopod (Caecidotea bicrenenta) population genetics in Fern Cave, AL, USA, a 25 km-long cave system. Combined, these data show the connections between two separate flow paths during flood events as the downstream populations of isopods belonging to the same subpopulation were measured in both systems. Additionally, the sub-populations found in higher elevations of the cave suggest a highly interconnected unsaturated zone that allows for genetic movement in the vadose zone. Although upstream populations show some similarities in genetics, hydrologic barriers, in the form of large waterfalls, likely separate populations within the same stream.

Funder

United States Fish and Wildlife Service

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3