Cationic Cyclopropenium-Based Hyper-Crosslinked Polymer Enhanced Polyethylene Oxide Composite Electrolyte for All-Solid-State Li-S Battery

Author:

Lian Shuang,Wang Yu,Ji Haifeng,Zhang XiaojieORCID,Shi Jingjing,Feng Yi,Qu Xiongwei

Abstract

The development of solid-state polymer electrolytes is an effective way to overcome the notorious shuttle effect of polysulfides in traditional liquid lithium sulfur batteries. In this paper, cationic cyclopropenium based cross-linked polymer was firstly prepared with the one pot method, and then the counter ion was replaced by TFSI− anion using simple ion replacement. Cationic cyclopropenium hyper-crosslinked polymer (HP) was introduced into a polyethylene oxide (PEO) matrix with the solution casting method to prepare a composite polymer electrolyte membrane. By adding HP@TFSI to the PEO-based electrolyte, the mechanical and electrochemical properties of the solid-state lithium-sulfur batteries were significantly improved. The PEO-20%HP@TFSI electrolyte shows the highest Li+ ionic conductivity at 60 °C (4.0 × 10−4 S·cm−1) and the highest mechanical strength. In the PEO matrix, uniform distribution of HP@TFSI inhibits crystallization and weakens the interaction between each PEO chain. Compared with pure PEO/LiTFSI electrolyte, the PEO-20%HP@TFSI electrolyte shows lower interface resistance and higher interface stability with lithium anode. The lithium sulfur battery based on the PEO-20%HP@TFSI electrolyte shows excellent electrochemical performance, high Coulombic efficiency and high cycle stability. After 500 cycles, the capacity of the lithium-sulfur battery based on PEO-20%HP@TFSI electrolytes keeps approximately 410 mAh·g−1 at 1 C, the Coulomb efficiency is close to 100%, and the cycle capacity decay rate is 0.082%.

Funder

National Institutes of Natural Sciences

Natural Science Foundation of Tianjin City

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3