Electronic Nose: Recent Developments in Gas Sensing and Molecular Mechanisms of Graphene Detection and Other Materials

Author:

Orzechowska SylwiaORCID,Mazurek AndrzejORCID,Świsłocka RenataORCID,Lewandowski Włodzimierz

Abstract

The aim of the study was to present the possibility of the sensitivity improvement of the electronic nose (e-nose) and to summarize the detection mechanisms of trace gas concentrations. Our main area of interest is graphene, however, for the better understanding of the sensing mechanisms, it is crucial to review other sensors of similar functions. On the basis of our previous research, we explained the detection mechanism which may stay behind the graphene sensor’s sensitivity improvement. We proposed a qualitative interpretation of detection mechanisms in graphene based on the theory regarding the influence of metals and substituents on the electronic systems of carbon rings and heterocyclic aromatic ligands. The analysis of detection mechanisms suggests that an increase of the electronic density in graphene by attaching a substituent and stabilization of electronic charge distribution leads to the increase of graphene sensor conductivity. The complexation of porphyrins with selected metals stabilizes the electronic system and increases the sensitivity and selectivity of porphyrin-based sensors. Our research summary and proposed conclusions allow us to better understand the mechanisms of a radical change of graphene conductivity in the presence of trace amounts of various gases.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

Reference93 articles.

1. Scents and Sensibility: A Molecular Logic of Olfactory Perception;Axel,2004

2. G-protein coupled receptors. Nobel Prize 2012 for chemistry to Robert J. Lefkowitz and Brian Kobilka;Bockaert;Med. Sci.,2012

3. Early Detection of Lung Cancer Using Nano-Nose - A Review

4. Measuring Compounds in Exhaled Air to Detect Alzheimer's Disease and Parkinson’s Disease

5. Detection of Prostate Cancer by an Electronic Nose: A Proof of Principle Study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3