Combustion of Date Stone and Jojoba Solid Waste in a Hybrid Rocket-like Combustion Chamber

Author:

Alsaidi Saleh B.1,Huh Jeongmoo12ORCID,Selim Mohamed Y. E.13ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates

2. National Space Science and Technology Center (NSSTC), United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates

3. National Water and Energy Center (NWEC), United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates

Abstract

The performance of two solid biomass wastes, date stone and jojoba solid waste, was experimentally examined for their potential application in combustion and propulsion systems. The fuels were tested in a hybrid rocket-like combustion environment, and the test result was analyzed with combustion and propulsion parameters. The performance of both fuels was comparatively evaluated and compared with a conventional hydrocarbon fuel in a hybrid rocket, with paraffin wax serving as a baseline. A compression device was introduced to compress the solid biomass wastes into a circular-shaped fuel grain compatible with a hybrid rocket combustion chamber with a hot surface ignitor. Thermogravimetric analysis (TGA) and chemical equilibrium analysis (CEA) results revealed that the performance of the biomass fuel can be comparable to conventionally used hydrocarbon paraffin-wax-based propellant within a certain range of oxidizer-to-fuel ratio, in terms of theoretical specific impulse performance. Through experimental performance tests, it was found that the compressed biomass fuel grains were successfully ignited and produced thrust. Both biomass fuels tested in a hybrid rocket combustion chamber are expected to pave the way for further developments in biomass fuels in the waste-to-energy field for their application in combustion and propulsion systems, potentially replacing fossil fuels with renewable resources.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3