Experimental Study of the Aerodynamic Interaction between the Forewing and Hindwing of a Beetle-Type Ornithopter

Author:

Takahashi Hidetoshi,Abe Kosuke,Takahata TomoyukiORCID,Shimoyama Isao

Abstract

Beetles have attracted attention from researchers due to their unique combination of a passively flapping forewing and an actively flapping hindwing during flight. Because the wing loads of beetles are larger than the wing loads of other insects, the mechanism of beetle flight is potentially useful for modeling a small aircraft with a large weight. In this paper, we present a beetle-type ornithopter in which the wings are geometrically and kinematically modeled after an actual beetle. Furthermore, the forewing is designed to be changeable between no-wing, flapping-wing, or fixed-wing configurations. Micro-electro-mechanical systems (MEMS) differential pressure sensors were attached to both the forewing and the hindwing to evaluate the aerodynamic performance during flight. Whether the forewing is configured as a flapping wing or a fixed wing, it generated constant positive differential pressure during forward flight, whereas the differential pressure on the hindwing varied with the flapping motion during forward flight. The experimental results suggest that beetles utilize the forewing for effective vertical force enhancement.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference35 articles.

1. The Biomechanics of Insect Flight: Form, Function, Evolution;Dudley,2000

2. Asymmetric hindwing foldings in rove beetles

3. Insects in Flight (Japanaese);Kuribayashi,1981

4. Relationship between wingbeat frequency and resonant frequency of the wing in insects;San;Bioinspir. Biomim.,2013

5. Dragonfly Flight: Novel Uses of Unsteady Separated Flows

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3