Numerical Simulation and Experimental Study on the Aerodynamics of Propulsive Wing for a Novel Electric Vertical Take-Off and Landing Aircraft

Author:

Wang Junjie1ORCID,Zhang Xinfeng2,Lu Jiaxin3ORCID,Tang Zhengfei3

Affiliation:

1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310011, China

3. Academy of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

The electric vertical take-off and landing (eVTOL) aircraft offers the advantages of vertical take-off and landing, environmental cleanliness, and automated control, making it a crucial component of future urban air traffic. As competition intensifies, demands for aircraft performance are escalating, including forward flight speed and payload capacity. The article presents a novel eVTOL design with propulsive wings and establishes methodologies for propulsive wing unsteady numerical simulation and wind tunnel experiments, analyzing its aerodynamic characteristics and lift enhancement mechanism. The results indicate that the cross-flow fan (CFF) provides unique airflow control capabilities, enabling the propulsive wing to achieve remarkably high lift coefficients (exceeding 7.6 in experiments) and propulsion coefficients (exceeding 7.1 in experiments) at extreme angles of attack (30°~40°) and low airspeeds. On the one hand, the CFF effectively controls boundary layer flow, delaying airflow separation at high angles of attack; on the other hand, the rotation of the CFF induces two eccentric vortices, generating vortex-induced lift and propulsion. The aerodynamic performance of the propulsive wing depends on the advance ratio and angle of attack. Typically, both lift and propulsion coefficients increase with the advance ratio, while lift and drag coefficients increase with the angle of attack. The propulsive wing shows significant advantages and prospects for eVTOL aircrafts in the low flight velocity range (0–30 m/s).

Funder

National Key Laboratory of Helicopter Aeromechanics

Zhejiang Provincial Emergency Department

Key R&D Program of the Ministry of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3