Unmanned Aerial Vehicle Pitch Control under Delay Using Deep Reinforcement Learning with Continuous Action in Wind Tunnel Test

Author:

Wada DaichiORCID,Araujo-Estrada Sergio A.ORCID,Windsor Shane

Abstract

Nonlinear flight controllers for fixed-wing unmanned aerial vehicles (UAVs) can potentially be developed using deep reinforcement learning. However, there is often a reality gap between the simulation models used to train these controllers and the real world. This study experimentally investigated the application of deep reinforcement learning to the pitch control of a UAV in wind tunnel tests, with a particular focus of investigating the effect of time delays on flight controller performance. Multiple neural networks were trained in simulation with different assumed time delays and then wind tunnel tested. The neural networks trained with shorter delays tended to be susceptible to delay in the real tests and produce fluctuating behaviour. The neural networks trained with longer delays behaved more conservatively and did not produce oscillations but suffered steady state errors under some conditions due to unmodeled frictional effects. These results highlight the importance of performing physical experiments to validate controller performance and how the training approach used with reinforcement learning needs to be robust to reality gaps between simulation and the real world.

Funder

Japan Society for the Promotion of Science

European Research Council

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on reinforcement learning in aviation applications;Engineering Applications of Artificial Intelligence;2024-10

2. Control stability analysis of dynamic model with time delay for quadrotor UAV;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2024-06-21

3. Fixed-time trajectory tracking control of a quadrotor UAV under time-varying wind disturbances: theory and experimental validation;Measurement Science and Technology;2024-05-17

4. Flight Simulation of a Hybrid Electric Propulsion VTOL UAV for Mission Performance Assessment;Advances in Science and Technology;2024-03-27

5. Leader–follower UAVs formation control based on a deep Q-network collaborative framework;Scientific Reports;2024-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3