Numerical Investigation on the Mechanism of Solid Rocket Motor Instability Induced by Differences between On-Ground and In-Flight Conditions

Author:

Wang Ge1,Li Chengke1,Pu Weiqiang1,Zhou Bocheng1,Yang Haiwei1,Yang Zenan1

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

A solid rocket motor (SRM) with a high aspect ratio that performs normally during ground tests may experience instability during flight. To address this issue, this study employs the pulse triggering method and the numerical approach of two-way fluid–structure interaction to investigate the mechanisms behind the SRM instability resulting from distinctions between on-ground and in-flight conditions. The results indicate that the main distinctions between the on-ground and in-flight conditions for SRMs are the strong constraints during the ground test, as well as aerodynamic forces and aerodynamic heating during flight. The strong constraints in the ground test effectively suppress structural vibrations by limiting displacements. In flight conditions, the aerodynamic heating reduces the strength of the SRM casing and aerodynamic forces provide sustained energy input for structural vibrations during flight. The mechanism for the ground/flight differences that induce SRM instability is that the structural natural frequencies are reduced by aerodynamic heating and the first-order acoustic frequency increased by the propellant regression approach reaches the resonance condition. Therefore, an instability factor Φ is proposed to represent the resonance relationship between the structural natural modes and the acoustic mode of SRMs. Furthermore, the closer the frequency of the aerodynamic forces is to the resonance frequency of the acoustic-structure coupling, the more pronounced the SRM instability.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3