Feature-Tracking-Derived Strain Analysis for Identification of Subendocardium-Involved Late Gadolinium Enhancement in Load-Induced Left Ventricular Hypertrophy: A Multicenter Study of Cardiac Magnetic Resonance Data

Author:

Zhong Ying1,Long Qian2,Zeng Mu23,Wu Lianming4,Guo Liang5,Wang Guan1

Affiliation:

1. Department of Radiology, The First Hospital of China Medical University, Shenyang 110001, China

2. Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China

3. National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China

4. Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China

5. Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang 110001, China

Abstract

Background: Subendocardium-involved late gadolinium enhancement (SILGE) is a significant predictor of poor prognosis in patients with load-induced left ventricular hypertrophy (LVH). Objectives: This multicenter study aimed to investigate whether the diagnostic performance of cardiac magnetic resonance feature-tracking (CMR-FT)-derived strain analysis for detecting subtle subendocardial injury would be influenced by its load dependence in patients with load-induced LVH. Methods: A total of 149 patients with load-induced LVH were recruited from three centers and underwent enhanced CMR imaging. The patients were divided into two groups based on the presence or absence of SILGE on CMR (SILGE+ group: n = 56; SILGE− group: n = 93). Clinical and CMR parameters were evaluated in both groups. Results: The LV systolic pressure (LVSP) and LV end-diastolic pressure (LVEDP) in the SILGE+ group were higher than those in the SILGE− group (each with p < 0.05), and LVSP and LVEDP were correlated with the LV global longitudinal strain (GLS) (each with p < 0.05) in research center 1. The LV strain parameters were significantly lower in the SILGE+ group than those in the SILGE− group (each with p < 0.05). Logistic regression analysis identified GLS (OR 1.325; 95% CI 1.180 to 1.487, p < 0.001) as a predictive factor of SILGE in the patients with load-induced LVH. The receiver operating characteristic (ROC) curve analysis results indicated that the areas under the curve (AUC) of global radial strain (GRS), global circumferential strain (GCS), and GLS were 0.68, 0.69, and 0.76, respectively. De Long’s test results implied that GLS had the best diagnostic performance for SILGE (p = 0.04). Conclusion: Despite the load dependency of CMR-FT-derived strain analysis, the GLS exhibits reasonable accuracy in the identification of SILGE and can potentially serve as a feasible alternative for detecting subendocardial involvement in patients with load-induced LVH who are contraindicated for LGE.

Funder

Natural Science Foundation of Liaoning Province

Natural Science Foundation of Shenyang City

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3