Prediction of Long-Term Stroke Recurrence Using Machine Learning Models

Author:

Abedi VidaORCID,Avula VenkateshORCID,Chaudhary Durgesh,Shahjouei Shima,Khan Ayesha,Griessenauer Christoph JORCID,Li JiangORCID,Zand Ramin

Abstract

Background: The long-term risk of recurrent ischemic stroke, estimated to be between 17% and 30%, cannot be reliably assessed at an individual level. Our goal was to study whether machine-learning can be trained to predict stroke recurrence and identify key clinical variables and assess whether performance metrics can be optimized. Methods: We used patient-level data from electronic health records, six interpretable algorithms (Logistic Regression, Extreme Gradient Boosting, Gradient Boosting Machine, Random Forest, Support Vector Machine, Decision Tree), four feature selection strategies, five prediction windows, and two sampling strategies to develop 288 models for up to 5-year stroke recurrence prediction. We further identified important clinical features and different optimization strategies. Results: We included 2091 ischemic stroke patients. Model area under the receiver operating characteristic (AUROC) curve was stable for prediction windows of 1, 2, 3, 4, and 5 years, with the highest score for the 1-year (0.79) and the lowest score for the 5-year prediction window (0.69). A total of 21 (7%) models reached an AUROC above 0.73 while 110 (38%) models reached an AUROC greater than 0.7. Among the 53 features analyzed, age, body mass index, and laboratory-based features (such as high-density lipoprotein, hemoglobin A1c, and creatinine) had the highest overall importance scores. The balance between specificity and sensitivity improved through sampling strategies. Conclusion: All of the selected six algorithms could be trained to predict the long-term stroke recurrence and laboratory-based variables were highly associated with stroke recurrence. The latter could be targeted for personalized interventions. Model performance metrics could be optimized, and models can be implemented in the same healthcare system as intelligent decision support for targeted intervention.

Publisher

MDPI AG

Subject

General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3