Metabolomics Analysis Reveals Molecular Signatures of Metabolic Complexity in Children with Hypercholesterolemia

Author:

Gu Pei-Shin12ORCID,Su Kuan-Wen3ORCID,Yeh Kuo-Wei4,Huang Jing-Long5,Lo Fu-Sung1ORCID,Chiu Chih-Yung46ORCID

Affiliation:

1. Division of Pediatric Endocrinology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan

2. Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan

3. Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Taoyuan 333, Taiwan

4. Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan

5. Department of Pediatrics, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan

6. Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan

Abstract

Despite the importance of hypercholesterolemia in children, it is overlooked, and there are currently few metabolomics-based approaches available to understand its molecular mechanisms. Children from a birth cohort had their cholesterol levels measured with the aim of identifying the metabolites for the molecular biological pathways of childhood hypercholesterolemia. One hundred and twenty-five children were enrolled and stratified into three groups according to cholesterol levels (acceptable, <170 mg/dL, n = 42; borderline, 170–200 mg/dL, n = 52; and high, >200 mg/dL, n = 31). Plasma metabolomic profiles were obtained by using 1H-nuclear magnetic resonance (NMR) spectroscopy, and partial least squares-discriminant analysis (PLS-DA) was applied using the MetaboAnalyst 5.0 platform. Metabolites significantly associated with different cholesterol statuses were identified, and random forest classifier models were used to rank the importance of these metabolites. Their associations with serum lipid profile and functional metabolic pathways related to hypercholesterolemia were also assessed. Cholesterol level was significantly positively correlated with LDL-C and Apo-B level, as well as HDL-C and Apo-A1 level separately, whereas HDL-C was negatively correlated with triglyceride level (p < 0.01). Eight metabolites including tyrosine, glutamic acid, ornithine, lysine, alanine, creatinine, oxoglutaric acid, and creatine were significantly associated with the different statuses of cholesterol level. Among them, glutamic acid and tyrosine had the highest importance for different cholesterol statuses using random forest regression models. Carbohydrate and amino acid metabolisms were significantly associated with different cholesterol statuses, with glutamic acid being involved in all amino acid metabolic pathways (FDR-adjusted p < 0.01). Hypercholesterolemia is a significant health concern among children, with up to 25% having high cholesterol levels. Glutamic acid and tyrosine are crucial amino acids in lipid metabolism, with glutamic-acid-related amino acid metabolism playing a significant role in regulating cholesterol levels.

Funder

Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3