Reducing the Residual Topography Phase for the Robust Landscape Deformation Monitoring of Architectural Heritage Sites in Mountain Areas: The Pseudo-Combination SBAS Method

Author:

Xu HangORCID,Chen FulongORCID,Zhou Wei,Wang Cheng

Abstract

Monitoring deformation of architectural heritage sites is important for the quantitative evaluation of their stability. However, deformation monitoring of sites in mountainous areas remains challenging whether utilizing global navigation satellite system (GNSS) or interferometric synthetic aperture radar (InSAR) techniques. In this study, we improved the small baseline subset (SBAS) approach by introducing the pseudo-baseline combination strategy to avoid the errors caused by inaccurate external DEM, resulting in robust deformation estimations in mountainous areas where the architectural heritage site of the Great Wall is located. First, a simulated dataset and a real dataset were used to verify the reliability and effectiveness of the algorithm, respectively. Subsequently, the algorithm was applied in the landscape deformation monitoring of the Shanhaiguan section of the Great Wall using 51 Sentinel-1 scenes acquired from 2016 to 2018. A thematic stability map of the Shanhaiguan Great Wall corridor was generated, revealing that the landscape was generally stable save for local instabilities due to to unstable rocks and wall monuments. This study demonstrated the capabilities of adaptive multitemporal InSAR (MTInSAR) approaches in the preventive landscape deformation monitoring of large-scale architectural heritage sites in complex terrain.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3