Abstract
Nanofluid electrodes with high loading of active solid materials have significant potential as high energy density flow battery electrolytes; however, two key criteria need to be met: they must have a manageable viscosity for pumping and simultaneously exhibit good electrochemical activity. A typical dispersion of nickel hydroxide nanoparticles (~100 nm) is limited to 5–10 wt.% of solids, above which it has a paste-like consistency, incompatible with flow applications. We report on the successful formulation of stable dispersions of a nano-scale nickel hydroxide cathode (β-Ni(OH)2) with up to 60 wt.% of solids and low viscosity (32 cP at 25 °C), utilizing a surface graft of small organic molecules. The fraction of grafting moiety is less than 3 wt.% of the nanoparticle weight, and its presence is crucial for the colloidal stability and low viscosity of suspensions. Electrochemical testing of the pristine and modified β-Ni(OH)2 nanoparticles in the form of solid casted electrodes were found to be comparable with the latter exhibiting a maximum discharge capacity of ~237 mAh/g over 50 consecutive charge–discharge cycles, close to the theoretical capacity of 289 mAh/g.
Funder
National Aeronautics and Space Administration
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献