Addressing Demographic Bias in Age Estimation Models through Optimized Dataset Composition

Author:

Panić Nenad1,Marjanović Marina1,Bezdan Timea1ORCID

Affiliation:

1. Faculty of Technical Sciences, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia

Abstract

Bias in facial recognition systems often results in unequal performance across demographic groups. This study addresses this by investigating how dataset composition affects the performance and bias of age estimation models across ethnicities. We fine-tuned pre-trained Convolutional Neural Networks (CNNs) like VGG19 on the diverse UTKFace dataset (23,705 samples: 10,078 White, 4526 Black, 3434 Asian) and APPA-REAL (7691 samples: 6686 White, 231 Black, 674 Asian). Our approach involved adjusting dataset compositions by oversampling minority groups or reducing samples from overrepresented groups to mitigate bias. We conducted experiments to identify the optimal dataset composition that minimizes performance disparities among ethnic groups. The primary performance metric was Mean Absolute Error (MAE), measuring the average magnitude of prediction errors. We also analyzed the standard deviation of MAE across ethnic groups to assess performance consistency and equity. Our findings reveal that simple oversampling of minority groups does not ensure equitable performance. Instead, systematic adjustments, including reducing samples from overrepresented groups, led to more balanced performance and lower MAE standard deviations across ethnicities. These insights highlight the importance of tailored dataset adjustments and suggest exploring advanced data processing methods and algorithmic tweaks to enhance fairness and accuracy in facial recognition technologies.

Funder

Science Fund of the Republic of Serbia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3